

Comparative Electronic Band Structure Study of the Intrachain Ferromagnetic versus Antiferromagnetic Coupling in the Magnetic Oxides Ca₃Co₂O₆ and Ca₃FeRhO₆

Antoine Villesuzanne*,† and Myung-Hwan Whangbo*

*Department of Chemistry, North Carolina State Uni*V*ersity, Raleigh, North Carolina 27695-8204*

Received June 1, 2005

In the $(MM^{\prime}O_6)_{\infty}$ chains of the transition-metal magnetic oxides Ca₃MM[']O₆ the MO₆ trigonal prisms alternate with the M'O₆ octahedra by sharing their triangular faces. In the $(C_2O_6)_{\circ}$ chains of Ca₃Co₂O₆ (M = M' = Co) the spins are coupled ferromagnetically, but in the (FeRhO₆)_∞ chains of Ca₃FeRhO₆ (M = Fe, M' = Rh) they are coupled antiferromagnetically. The origin of this difference was probed by carrying out spin-polarized density functional theory electronic band structure calculations for ordered spin states of $Ca_3Co_2O_6$ and Ca_3FeRhO_6 . The spin state of a (MM'O₆)_∞ chain determines the occurrence of direct metal–metal bonding between the adjacent trigonal prism and octahedral site transition-metal atoms. The extent of direct metal–metal bonding in the $(Co_2O_6)_{\sim}$ chains of $Ca₃Co₂O₆$ is stronger in the intrachain ferromagnetic state than in the intrachain antiferromagnetic state, so that the intrachain ferromagnetic state becomes more stable than the intrachain antiferromagnetic state. Such a metal− metal-bonding-induced ferromagnetism is expected to occur in magnetic insulators and magnetic metals of transitionmetal elements in which direct metal–metal bonding can be enhanced by ferromagnetic ordering. In the (FeRhO₆)_∞ chains of Ca₃FeRhO₆ the ferromagnetic coupling does not lead to a strong metal–metal bonding and the adjacent spins interact by the Fe–O…O–Fe super-superexchange, hence leading to an antiferromagnetic coupling.

1. Introduction

In the transition-metal magnetic oxides $Ca₃M₀₆$ the $(MM'O₆)_∞$ chains are separated by Ca²⁺ cations, each $(MM'O₆)_∞$ chain has $MO₆$ trigonal prisms alternating with $M'O₆$ octahedra by sharing their triangular faces, and these one-dimensional (1D) chains are closely packed to form a hexagonal lattice (Figure 1). The magnetic susceptibility of $Ca₃Co₂O₆$ (M = M' = Co) is highly anisotropic and described by an Ising Hamiltonian.¹⁻³ To a first approximation each trigonal prism (TP) site has a high-spin $Co³⁺$ (d⁶) $S = 2$) ion and each octahedral (OCT) site a low-spin Co³⁺ $(d^6, S = 0)$ ion,³⁻⁵ so that the highly anisotropic magnetic
properties of $Ca_6Co_2O_2$ originate from the TP-site Co^{3+}/d^6 properties of $Ca_3Co_2O_6$ originate from the TP-site Co^{3+} (d⁶, $S = 2$) ions. Indeed, a recent study of crystal field and spin-

10.1021/ic0508775 CCC: \$30.25 © 2005 American Chemical Society **Inorganic Chemistry,** Vol. 44, No. 18, 2005 **6339** Published on Web 08/04/2005

orbit coupling effects showed that a high-spin $d⁶$ ion at a TP site has uniaxial magnetic properties.⁶ In $Ca_3Co_2O_6$ the adjacent TP-site $Co³⁺$ ions have a strong ferromagnetic (FM) coupling in each $(Co_2O_6)_{\infty}$ chain while the interchain coupling is weakly antiferromagnetic $(AFM).^{2,3,7-10}$ Thus, the magnetic properties of $Ca₃Co₂O₆$ can be described in terms of a planar Ising hexagonal lattice in which the magnetic moment of each $(Co_2O_6)_{\infty}$ chain plays the role of one spin.² $Ca₃FeRhO₆$ has one less valence electron per formula unit (FU) than $Ca_3Co_2O_6$. In the (FeRhO₆)_∞ chains of Ca₃FeRhO₆ the Fe and Rh atoms are located at the TP and OCT sites, respectively.¹¹⁻¹³ The ⁵⁷Fe Mössbauer study of $Ca₃FeRhO₆$

(4) Sampathkumaran, E. V.; Fujiwara, N.; Rayaprol, S.; Madhu, P. K.; Uwatoko, Y. *Phys. Re*V*. B* **²⁰⁰⁴**, *⁷⁰*, 014437.

- (6) Dai, D.; Whangbo, M.-H. *Inorg. Chem*. **2005**, *44*, 4407.
- (7) Aasland, S.; Fjellvåg, H.; Hauback, B. *Solid State Commun.* **1997**, *101*, 187.
- (8) Kageyama, H.; Yoshimura, K.; Kosuge, K.; Mitamura, H.; Goto, T. *J. Phys. Soc. Jpn.* **1997**, *66*, 1607.
- (9) Kageyama, H.; Yoshimura, K.; Kosuge, K.; Xu, X.; Kawano, S. *J. Phys. Soc. Jpn.* **1998**, *67*, 357.
- (10) Martínez, B.; Laukhin, V.; Hernando, M.; Fontcuberta, J.; Parras, M.; Gonza´lez-Calbet, J. M. *Phys. Re*V*. B* **²⁰⁰¹**, *⁶⁴*, 012417.

^{*} To whom correspondence should be addressed. E-mail: ville@ icmcb-bordeaux.cnrs.fr (A.V.); mike_whangbo@ncsu.edu (M.-H.W.).

[†] Permanent address: ICMCB-CNRS, 87 Avenue du Dr. Schweitzer, 33608 Pessac Cedex France.

⁽¹⁾ Kageyama, H.; Yoshimura, K.; Kosuge, K.; Azuma, M.; Takano, M.; Mitamura, H.; Goto, T. *J. Phys. Soc*. *Jpn*. **1997**, *66*, 3996.

⁽²⁾ Maignan, A.; Michel, C.; Masset, A. C.; Martin, C.; Raveau, B. *Eur. J. Phys. B* **2000**, *15*, 657.

⁽³⁾ Hardy, V.; Lambert, S.; Lees, M. R.; Paul, D. Mc K. *Phys. Re*V*. B* **2003**, *68*, 014424.

⁽⁵⁾ Whangbo, M.-H.; Dai, D.; Koo, H.-J.; Jobic, S. *Solid State Commun*. **2003**, *125*, 413.

Villesuzanne and Whangbo

Figure 1. Crystal structure of Ca₃MM'O₆: (a) a perspective view and (b) a projection view of the $(MM'O₆)_∞$ chains along the chain direction.

showed that each TP site has a high-spin Fe^{3+} (d⁵, $S = 5/2$)
ion ¹³ so it is most likely that each OCT site has a low-spin ion,¹³ so it is most likely that each OCT site has a low-spin Rh³⁺ (d⁶, $S = 0$) ion. Therefore, Ca₃FeRhO₆ is similar to
C₃₂Co₂O₆ in that to a first approximation the TP sites have $Ca₃Co₂O₆$ in that, to a first approximation, the TP sites have unpaired spins while the OCT sites are diamagnetic. However, $Ca_3Co_2O_6$ and Ca_3FeRhO_6 are quite different in their magnetic properties because the spins of adjacent TP-site ions have an AFM coupling in the $(FeRhO₆)_∞$ chains but a FM coupling in the $(Co_2O_6)_{\infty}$ chains. From the viewpoint of spin exchange,¹⁴ the intrachain spin exchange between adjacent TP sites is of the super-superexchange type involving the M-O $\cdot\cdot\cdot$ O-M (M = Co, Fe) paths and is therefore expected to be AFM rather than FM. Thus far it is not known why $Ca_3Co_2O_6$ and Ca_3FeRhO_6 exhibit different intrachain spin coupling behaviors. In the present work we explore what electronic factor causes an intrachain ferromagnetism in Ca3- $Co₂O₆$ but an intrachain antiferromagnetism in $Ca₃FeRhO₆$ on the basis of density functional theory (DFT) electronic band structure calculations for $Ca_3Co_2O_6$ and Ca_3FeRhO_6 .

2. Computational Details

First-principles DFT electronic band structures were calculated for nonmagnetic and magnetic states of $Ca₃Co₂O₆$ and $Ca₃FeRhO₆$ using the full-potential, all-electrons (linearized)-augmented plane wave $+$ local orbitals (L/APW+lo) method^{15,16} implemented in the WIEN2k code.¹⁷ As for the magnetic states of $Ca₃Co₂O₆$ and $Ca₃$ -FeRhO₆, two ordered spin arrangements for $Ca₃Co₂O₆$ and $Ca₃$ -

 $FeRhO₆$ were considered: the intrachain FM state in which the spins of adjacent TP sites have a FM coupling in each $(MM'O₆)_{\infty}$ chain and the intrachain AFM state in which they have an AFM coupling. In both intrachain FM and AFM states the $(MM'O₆)_{\infty}$ chains were assumed to have a FM coupling to reduce our computational task.

The generalized gradient approximation (GGA) of Perdew, Burke, and Ernzherof was chosen as the exchange-correlation functional.¹⁸ For $Ca_3Co_2O_6$ the values of the atomic sphere radii were 2.6 au for Ca, 1.72 au for O, and 1.9 au for Co. For Ca₃-FeRhO₆ the values of the sphere radii were 2.5 au for Ca, 1.80 au for O, 2.24 au for Fe, and 2.06 au for Rh. The Co 3s, Fe 3s, and Rh 4s orbitals were treated as semicore states. The plane-wave cutoff was R_{MT} ^{\cdot} K_{max} = 7, and up to 118 *k* points were used for the sampling of the irreducible wedges of the Brillouin zones. The energy criterion for self-consistency was set to 10^{-4} Ryd per unit cell for $Ca_3Co_2O_6$ and was decreased to 10^{-5} Ryd for Ca_3FeRhO_6 because the FM and AFM solutions were close in energy. We used the experimental crystal structures of $Ca₃Co₂O₆¹⁹$ and $Ca₃FeRhO₆¹²$ determined at room temperature. In obtaining partial density of states (DOS) plots, the *z* axis was chosen as the chain direction.

We also carried out LDA+U calculations^{20,21} for $Ca_3Co_2O_6$ and $Ca₃FeRhO₆$ to see if the relative stabilities of the intrachain FM and AFM states of $Ca_3Co_2O_6$ and Ca_3FeRhO_6 obtained from the GGA calculations remain valid. A recent DFT study²² of $Ca_3Co_2O_6$ with FM chains reported that DFT calculations without LDA+^U are sufficient in describing its magnetic properties. Another DFT study²³ of Ca₃Co₂O₆ reported results of LDA+U with spin-orbit coupling calculations (hereafter referred to as the LDA+U+SOC calculations).

3. Spin Distributions in and Relative Energies of the Intrachain FM and AFM States

The relative energies calculated for the intrachain FM and AFM states of $Ca₃Co₂O₆$ and $Ca₃FeRhO₆$ are summarized in Table 1. According to our GGA calculations, the energy

- (15) Sjo¨stedt, E.; Nordstro¨m, L.; Singh, D. *Solid State Commun*. **2000**, *114*, 15.
- (16) Madsen, G. K. H.; Blaha, P.; Schwarz, K.; Sjöstedt, E.; Nordström, L. *Phys. Re*V*. B* **²⁰⁰¹**, *⁶⁴*, 195134.
- (17) Blaha, P.; Schwarz, K.; Madsen, G. K. H.; Kvasnicka, D.; Luitz, J. *WIEN2k, An Augmented Plane Wa*V*e Plus Local Orbitals Program for Calculating Crystal Properties*; Vienna University of Technology: Austria, 2001.
- (18) Perdew, J. P.; Burke, K.; Ernzerhof, M. *Phys. Re*V*. Lett.* **¹⁹⁹⁶**, *⁷⁷*, 3865.
- (19) Fjellvåg, H.; Gulbrandsen, E.; Aasland, S.; Olsen, A.; Hauback, B. C. *J. Solid State Chem.* **1996**, *124*, 190.
- (20) Anisimov, V. I.; Solovyev, I. V.; Korotin, M. A.; Czyzyk, M. T.; Sawatzky, G. A. *Phys. Re*V*. B* **¹⁹⁹³**, *⁴⁸*, 16929.
- (21) Liechtenstein, A. I.; Anisimov, V. I.; Zaanen, J. *Phys. Re*V*. B* **¹⁹⁹⁵**, *52*, R5467.
- (22) Vidya, R.; Ravindran, P.; Fjellvåg, H.; Kjekshus, A.; Eriksson, O. *Phys. Re*V*. Lett.* **²⁰⁰³**, *⁹¹*, 186404.
- (23) Wu, H.; Haverkort, M. W.; Khomskii, D. I.; Tjeng, L. H. http:// arxiv.org/abs/cond-mat/0504490.

⁽¹¹⁾ Niitaka, S.; Kageyama, H.; Kato, M.; Yoshimura, K.; Kosuge, K. *J. Solid State Chem.* **1999**, *146*, 137.

⁽¹²⁾ Davis, M. J.; Smith, M. D.; zur Loye, H.-C. *J. Solid State Chem*. **2003**, *173*, 122.

⁽¹³⁾ Niitaka, S.; Yoshimura, K.; Kosuge, K.; Mibu, K.; Mitamura, H.; Goto, T. *J. Magn. Magn. Mater.* **2003**, *260*, 48.

⁽¹⁴⁾ For recent reviews, see: (a) Whangbo, M.-H.; Koo, H.-J.; Dai, D. *J. Solid State Chem*. **2003**, *176*, 417. (b) Whangbo, M.-H.; Dai, D.; Koo, H.-J. *Solid State Sci*. **2005**, *7*, 827.

$$

Table 2. Net Spin Populations of the Transition-Metal and Oxygen Atoms of $Ca_3Co_2O_6$ and Ca_3FeRhO_6 in the Intrachain FM and AFM States Obtained from GGA Calculations with the L/APW+lo Method

state	compound	TP site	OCT site	
FM	$Ca_3Co_2O_6$	2.72	0.33	0.13
	Ca ₃ FeRhO ₆	3.86	0.18	0.13
AFM	$Ca_3Co_2O_6$	2.72	0.00	0.13
	Ca ₃ FeRhO ₆	3.89	0.00	0.15

difference per FU between the intrachain AFM and FM states, $\Delta E = E_{\text{AFM}} - E_{\text{FM}}$, is given by -8 meV/FU for Ca₃-FeRhO₆ and 77 meV/FU for $Ca₃Co₂O₆$. These results are entirely consistent with the intrachain AFM coupling observed for $Ca_3FeRhO₆^{12–14}$ and the intrachain FM coupling observed for $Ca_3Co_2O_6$.^{2,3,7-10} The net spin populations at the metal and oxygen atoms of $Ca₃Co₂O₆$ and $Ca₃FeRhO₆$, calculated from the integration of the up-spin and downspin electron populations in the muffin-tin atomic spheres, are listed in Table 2. In the intrachain FM state the unpaired spin population is largely at the TP sites in both $Ca_3Co_2O_6$ and $Ca₃FeRhO₆$, while the unpaired spin population at the OCT site is smaller in $Ca₃FeRhO₆$ than in $Ca₃Co₂O₆$. To a first approximation, therefore, the OCT sites of $Ca₃Co₂O₆$ and $Ca₃FeRhO₆$ have low-spin $d⁶$ cations and the TP sites high-spin M^{3+} cations. This finding is consistent with the available experimental data. $3-5,13$ In the intrachain AFM state the unpaired spin populations are zero at the OCT sites by symmetry in both $Ca_3Co_2O_6$ and Ca_3FeRhO_6 .

Our LDA+U calculations for $Ca₃FeRhO₆$ with $U = 5.4$ eV show that the intrachain AFM state is more stable than the FM state by 5 meV, in good agreement with the relative stabilities of the intrachain FM and AFM states obtained from our GGA calculations. However, our LDA+U calculations for $Ca_3Co_2O_6$ reveal that the relative stabilities of the intrachain FM and AFM states depend on the *U* value and the initial density employed for calculations. For example, the intrachain FM state is more stable than the intrachain AFM state when $U = 3$ and 4 eV (i.e., $\Delta E = 27$ and 29 meV/FU, respectively), but the opposite is true when $U = 2$ and 5 eV (i.e., $\Delta E = -43$ and -6 meV/FU, respectively). Thus, the ferromagnetism of $Ca₃Co₂O₆$ is reproduced by LDA+U calculations with $U \approx 3-4$ eV, which lead to ΔE ≈ 28 meV/FU, a value smaller than the ∆*E* of the GGA calculations by a factor of [∼]0.4. The LDA+U+SOC calculations of Wu et al.,²³ using a different $LDA+U$ scheme (i.e., Hubbard mean-field scheme), showed ∆*E* ≈ 12 meV/ FU for $U = 4.1$ eV.²⁴ From this observation one might suggest that the [∆]*^E* value is reduced further by spin-orbit coupling.

The electronic band structure of $Ca₃Co₂O₆$ obtained from the GGA calculations shows partially filled bands, as will be presented below (section 5.1). As pointed out elsewhere, 2^5 it is important to recall that a system with partially filled bands can be a normal metal but is also subject to electron localization induced by electron-electron repulsion (Mott-

Hubbard localization), 26 by random potential (Anderson localization) associated with lattice defects, 27 or by electronphonon coupling as found for polaronic states.28 Electron localization causes the extent of the electron wave function to have a finite length *L*. If this localization length *L* is short, the electrons are strongly localized, so that the system behaves as an insulator, its charge transport occurs through hopping, and its resistivity increases strongly with decreasing the temperature. Using single-crystal samples Raquet et al.²⁹ found that the electrical conductivity of $Ca_3Co_2O_6$ is described by a variable range hopping mechanism with a rather high density of states at the Fermi level (i.e., $N(E_f) \approx 2.5 \times$ 10^{11} eV⁻¹ m⁻¹). Therefore, the electronic band structure of $Ca₃Co₂O₆ obtained from the GGA calculations, which show$ partially filled bands, is consistent with the experimental result of Raquet et al. In the study of Wu et al.²³ the hopping conductivity of $Ca₃Co₂O₆$ was explained by introducing a band gap at the Fermi level on the basis of LDA+U+SOC calculations. However, this explanation makes $N(E_f) = 0$, which is inconsistent with the experimental finding that $N(E_f)$ \neq 0. In view of this observation, the validity of LDA+U or LDA+U+SOC calculations for $Ca_3Co_2O_6$ is doubtful. As pointed out by Johannes et al. in their study of Na_xCoO_2 ,³⁰ use of LDA+U calculations requires caution and may lead to a worse agreement with experimental data than do simple LDA calculations. In addition, it should be recalled that *U* is an empirical parameter in LDA+U or LDA+U+SOC calculations. Therefore, in the following we will focus our discussion on our GGA calculations.

4. Effective Orbital Energies in Spin-Polarized Electronic Structure

The plots of the total and partial density of states (DOS) calculated for the nonmagnetic states of $Ca₃Co₂O₆$ and $Ca₃$ - $FeRhO₆$ are presented in Figure 2. The nature of the d-block bands and the occurrence of a band gap at the Fermi level in the nonmagnetic state are readily explained in terms of the d-block levels of an isolated $CoO₆$ octahedron and an isolated $CoO₆$ trigonal prism depicted in Figure 3, which were obtained from extended Hückel tight binding calculations.³¹ The bottom three levels of the $CoO₆$ trigonal prism lie below those of the $CoO₆$ octahedron and are each doubly occupied in the low-spin $Co³⁺$ configuration. For a low-spin $Fe³⁺$ ion at the TP site, one of the bottom three levels becomes half-filled. The d-block bands of the nonmagnetic states (Figure 2) show a band gap for $Ca_3Co_2O_6$ and a partially filled band for $Ca₃FeRhO₆$, which are a consequence

- (30) Johannes, M. D.; Mazin, I. I.; Singh, D. J. *Phys. Re*V*. B* **²⁰⁰⁵**, *⁷¹*, 205103.
- (31) Our calculations were carried out by employing the SAMOA (Structure and Molecular Orbital Analyzer) program package (Dai, D.; Ren, J.; Liang, W.; Whangbo, M.-H. http://chvamw.chem.ncsu.edu/, 2002).

⁽²⁴⁾ Wu et al. used the value of $U = 5$ eV, which corresponds to $U - J_H$ $= 5 - 0.9 = 4.1$ eV in our LDA+U scheme.

⁽²⁵⁾ Gourdon, O.; Evain, M.; Jobic, S.; Brec, R.; Koo, H.-J.; Whangbo, M.-H. *Inorg. Chem*. **2001**, *40*, 2898.

⁽²⁶⁾ Mott, N. F. *Metal*-*Insulator Transitions,* 2nd ed.; Taylor & Francis: New York, 1990.

⁽²⁷⁾ Hayes, W.; Stoneham, A. M. *Defects and Defect Processes in Nonmetallic Solids*; Wiley: New York, 1985.

⁽²⁸⁾ Schlenker, C.; Marezio, M. *Philos. Mag. B* **1980**, *42*, 453.

⁽²⁹⁾ Raquet, B.; Baibich, M. N.; Broto, J. M.; Rakoto, H.; Lambert, S.; Maignan, A. *Phys. Re*V*. B* **²⁰⁰²**, *⁶⁵*, 104442.

Figure 2. Total and partial DOS plots for the nonmagnetic state of (a) $Ca₃Co₂O₆$ and (b) $Ca₃FeRhO₆$ obtained from GGA calculations with the L /APW+lo method. The partial DOS plots for the d_z orbitals of the transition-metal atoms are indicated by shading transition-metal atoms are indicated by shading.

Figure 3. Occupations of the effective one-electron d-block levels for (a) the low-spin Co^{3+} ion at an OCT site, (b) the low-spin Co^{3+} ion at a TP site, and (c) the high-spin Co^{3+} ion at a TP site of $Ca_3Co_2O_6$.

of the low-spin electron configurations at the OCT and TP sites. With the 3-fold rotational axis of a $(Co_2O_6)_{\infty}$ chain taken as the *z* axis, the d_z ² orbital of a CoO_6 octahedron becomes one of its t_{2g} orbitals³² and that of a $CoO₆$ trigonal

prism becomes the lowest-lying d-block level of the trigonal prism (i.e., the 1a levels of Figure 3).

In DFT magnetic states are described by spin-polarized electronic structures, which give rise to different orbital compositions and different energy levels for up-spin and down-spin bands, in contrast to the case of nonmagnetic states. Thus, in describing the results of spin-polarized electronic structure calculations for $Ca₃Co₂O₆$ and $Ca₃$ - $FeRhO₆$ in the next section, it is crucial to know how the effective d-block levels of the TP- and OCT-site metal ions depend on the number of unpaired spins and the associated electron-electron repulsion. For simplicity, we restrict our discussion to the up-spin and down-spin d*^z* ² levels at the TP and OCT sites of $Ca_3Co_2O_6$ and denote the d_{z} ² levels of the OCT and TP sites in the absence of electron-electron repulsion as *e*^o and *e*t, respectively. In the presence of electron-electron repulsion, the up-spin and down-spin d_2 ²
levels of the low-spin OCT and the high-spin TP sites of levels of the low-spin OCT and the high-spin TP sites of $Ca₃Co₂O₆$ are expressed as³³⁻³⁶

$$
e_0^{\dagger} = e_0^{\dagger} \approx e_0^{\dagger} + U + 4U' - 2K
$$

$$
e_t^{\dagger} \approx e_t^{\dagger} + U + 4U' - 4K
$$

$$
e_t^{\dagger} \approx e_t^{\dagger} + U + 4U'
$$
(1)

where *U* is the on-site Coulomb repulsion for two electrons in a same metal d orbital, *U*′ is that for two electrons in two different metal d orbitals, and *K* is the exchange repulsion between two electrons of an identical spin in two different d orbitals. Then the energy differences between the up-spin and down-spin d*^z* ² levels are given by

$$
(e_0^{\dagger} - e_1^{\dagger}) \approx e_0 - e_1 + 2K
$$

$$
(e_0^{\dagger} - e_1^{\dagger}) \approx e_0 - e_1 - 2K
$$
 (2)

The energy levels of the $CoO₆$ octahedron and trigonal prism presented in Figure 3 show that $e_0 - e_1 > 0$ for $Ca_3Co_2O_6$ (i.e., $e_0 - e_1 = 0.14$ eV). Thus, due to the exchange integral K , the up-spin d_z ² levels have a greater energy difference than does the down-spin d_z^2 levels, i.e., $(e_0^{\dagger} - e_1^{\dagger}) > (e_0^{\dagger} -$
 *e*₄) Consequently, the adjacent TP and OCT sites should e_t V). Consequently, the adjacent TP and OCT sites should have a stronger orbital interaction (i.e., a stronger covalent interaction) for the down-spin d*^z* ² levels than for the up-spin d_z ² levels.³⁷

5. Spin-State-Dependent Metal-**Metal Bonding**

5.1. Ferromagnetic Coupling. The total and partial DOS plots obtained from GGA calculations for the FM state of $Ca₃Co₂O₆$ are shown in Figure 4. The relative ordering of these four subbands is in agreement with that of the d_z ² orbitals shown in eq 1. The down-spin d*^z* ² bands have both

- (33) Brandow, B. H. *Ad*V*. Phys*. **¹⁹⁷⁷**, *²⁶*, 651.
- (34) Whangbo, M.-H. *Inorg. Chem*. **1980**, *19*, 1728.
- (35) Pouchard, M.; Villesuzanne, A.; Doumerc, J.-P. *J. Solid State Chem*. **2001**, *162*, 282.
- (36) Whangbo, M.-H.; Koo, H.-J.; Villesuzanne, A.; Pouchard, M. *Inorg. Chem*. **2002**, *41*, 1920.
- (37) Albright, T. A.; Burdett, J. K.; Whangbo, M.-H. *Orbital Interactions in Chemistry*; Wiley: New York, 1985; Chapter 2.

⁽³²⁾ Whangbo, M.-H.; Koo, H.-J.; Dai, D.; Villesuzanne, A. *J. Solid State Chem*. **2002**, *165*, 345.

Figure 4. Total and partial DOS plots for the intrachain FM state of Ca₃- $Co₂O₆$ obtained from GGA calculations with the L/APW+lo method.

OCT and TP character and show a shape characteristic of 1D bands expected from overlap between the d*^z* ² orbitals of adjacent OCT and TP sites. In other words, the extent of the orbital mixing between the d*^z* ² levels of the OCT and TP sites is much stronger in the down-spin d_{z} ² bands than in the up-spin d*^z* ² bands. This is readily explained on the basis of eq 2 assuming that $e_t - e_0 \approx 2K$. Under this assumption the e_0 [↑] and e_1 [↑] levels are nearly degenerate (i.e., e_0 [↑] ≈ e_1 [↑]) and the e_t and e_0 levels are nondegenerate (i.e., $e_t \ge e_0$ + + 4*K*). Therefore, the 1D band formation and the strong metalmetal interaction in the down-spin d_{z} ² states of $Ca_3Co_2O_6$ arise from an accidental degeneracy of the $e_0\overline{V}$ and $e_1\overline{V}$ levels. In addition, the Co \cdots Co distance through the shared triangular face is short (i.e., 2.595 Å),¹⁹ so that the d_z^2 orbitals of adjacent TP and OCT sites can overlap significantly, thus leading to the wide down-spin d*^z* ² bands.

The up-spin $d_{xy}/d_{x^2-y^2}$ bands of largely TP character are completely filled, and so are the up-spin d*xz*/d*yz* bands of largely TP character, as expected from the high-spin electron configuration of a TP-site $Co³⁺$ ion in Figure 3. Of the two subbands of the down-spin d_{z} ² bands, the upper subband with slightly stronger TP character is partially empty while the down-spin $d_{xy}/d_{x^2-y^2}$ bands of largely TP character are partially filled (Figure 4). The upper subband of the downspin d_2 ² bands has an orbital character of metal-metal *σ*
antibonding while the down-spin d /d ² ² bands have no antibonding, while the down-spin $d_{xy}/d_{x^2-y^2}$ bands have no metal-metal interaction. Thus, the "electron transfer" from the upper subband of the down-spin d_z^2 bands to the downspin $d_{xy}/d_{x^2-y^2}$ bands strengthens metal-metal bonding be-
tween adjacent cobalt atoms in each (C_0, Q_1) , chain and also tween adjacent cobalt atoms in each $(Co₂O₆)_∞$ chain and also induces a small unpaired spin population at the OCT site (0.33 electrons).

The total and partial DOS plots obtained from GGA calculations for the intrachain FM state of $Ca₃FeRhO₆$ are presented in Figure 5. The electronic structure of $Ca₃FeRhO₆$ exhibits features similar to those found for $Ca_3Co_2O_6$. However, there are important differences. In contrast to Ca₃- $Co₂O₆$, the lower and upper subbands of the down-spin d_z ² bands are separated by a band gap (0.33 eV) in Ca₃FeRhO₆. Furthermore, $Ca₃FeRhO₆$ shows a much stronger TP character in the upper subband of the down-spin d_z ² bands and a much stronger OCT character in the lower subband of the down-spin d_z² bands. This indicates that in Ca₃FeRhO₆ the down-spin d_z ² level e_0 ^{\downarrow} of the OCT site is considerably lower in energy than the down-spin d_z ² level e_t ^{\downarrow} of the TP site. In the nonmagnetic state of $Ca₃FeRhO₆$ the d_z ² bands of the TP (Fe) and OCT (Rh) sites are similar in energy (Figure 2b) and thus form a wide 1D band. Under spin polarization, this degeneracy is lifted and the OCT d*^z* ² bands lie between the up- and down-spin TP d*^z* ² bands (Figure 5). Therefore, the direct metal-metal interaction in the intrachain FM state becomes much less efficient in $Ca₃FeRhO₆$ than in $Ca₃Co₂O₆$.

Since $Ca₃FeRhO₆$ has one less valence electron per FU than does $Ca₃Co₂O₆$, the upper subband of the down-spin d_z² bands is empty in Ca₃FeRhO₆. In Ca₃FeRhO₆ the downspin $d_{xy}/d_{x^2-y^2}$ bands of TP character are not filled and the spin density at the OCT site is reduced by a factor of almost two when compared with the case of $Ca_3Co_2O_6$ (Table 2).

5.2. Antiferromagnetic Coupling. The total and partial DOS plots calculated for the intrachain AFM state of $Ca₃$ - $Co₂O₆$ are shown in Figure 6. In contrast to the intrachain FM state, the up-spin and down-spin d_{z} ² bands of the intrachain AFM state are very narrow. In the intrachain AFM state the TP sites are divided into the up-spin and downspin sites. In the up-spin d_z ² bands the d_z ² orbitals of only the up-spin TP sites interact with those of their adjacent OCT sites. Likewise, in the down-spin d_z^2 bands the d_z^2 orbitals of only the down-spin TP sites interact with those of the adjacent OCT sites. Thus, in either the up-spin or downspin band the direct metal-metal bonding can take place only within each "OCT-TP-OCT" cluster unit of every $(Co₂O₆)_∞$ chain. Effectively, therefore, the extent of direct

Figure 5. Total and partial DOS plots calculated for the intrachain FM state of Ca₃FeRhO₆ obtained from GGA calculations with the L/APW+lo method.

metal-metal interaction between adjacent cobalt atoms is reduced in the intrachain AFM state, so that its d_{z} ² bands are narrow. Similar observations are found from the total and partial DOS plots calculated for the AFM state of Ca₃- $FeRhO₆$ shown in Figure 7. Nevertheless, in the intrachain FM state of $Ca₃FeRhO₆$ (Figure 5) the down-spin d_z ² bands of OCT and TP character are already well separated in energy, i.e., the direct metal-metal bonding interaction is weak. Thus, on going from the intrachain FM to the intrachain AFM state, the energy loss associated with losing direct metal-metal bonding is much weaker in $Ca₃FeRhO₆$ than in $Ca₃Co₂O₆$.

Figure 6. Total and partial DOS plots for the intrachain AFM state of $Ca₃Co₂O₆ obtained from GGA calculations with the L/APW+lo method.$

In the intrachain AFM state of $Ca₃Co₂O₆$ the d_z ² bands of largely TP character are partially empty while the $d_{xy}/d_{x^2-y^2}$ bands of largely TP character are partially occupied. As discussed in the previous section, this feature is also present in the intrachain FM state of $Ca₃Co₂O₆$. This indicates that the down-spin d_{z} ² orbital of the TP site is close in energy to the down-spin $d_{xy}/d_{x^2-y^2}$ orbital of the TP site.

6. Concluding Remarks

The intrachain ferromagnetism in $Ca_3Co_2O_6$ is explained in terms of the spin-state-dependent metal-metal interactions. The intrachain FM coupling is strongly favored over the intrachain AFM coupling in $Ca₃Co₂O₆$ because a stronger direct metal-metal bonding is allowed to take place between adjacent cobalt atoms in each $(Co₂O₆)_∞$ chain in the intrachain

Figure 7. Total and partial DOS plots calculated for the intrachain AFM state of Ca₃FeRhO₆ obtained from GGA calculations with the L/APW+lo method.

FM state than in the intrachain AFM state. The down-spin d_{z} ² orbital levels of the OCT- and TP-site Co^{3+} ions are similar in energy (accidental degeneracy) and orbital extension, and the nearest-neighbor Co-Co distance in each $(Co_2O_6)_{\infty}$ chain of $Ca_3Co_2O_6$ is short (i.e., 2.595 Å). Consequently, in the intrachain FM state the extent of direct metal-metal bonding between adjacent TP and OCT sites should be significant in $Ca₃Co₂O₆$. Ferromagnetism in materials arises from several different mechanisms, which include Stoner, 38 double exchange, 39 spin exchange, 40 and spin polarization⁴¹ mechanisms. The intrachain ferromagnetism of $Ca₃Co₂O₆$, which is not explained by any of these mechanisms, might be referred to as a metal-metal-bondinginduced ferromagnetism. This mechanism should be applicable to magnetic insulators and magnetic metals of transition-metal elements in which direct metal-metal bonding can be enhanced by ferromagnetic ordering. For example, $Ca₃CoRhO₆⁴²$ is isoelectronic and isostructural with $Ca₃Co₂O₆$ and shows an intrachain ferromagnetism as does $Ca₃Co₂O₆$. In the rare-earth intermetallic compound $PrMnSi₂,⁴³$ which consists of isolated layers of Mn atoms, the Mn atoms of each Mn layer are ferromagnetically coupled with ferromagnetic ordering between the Mn layers up to $T_C = 434$ K.

In $Ca₃FeRhO₆$ the down-spin $d_z²$ orbitals of the high-spin $Fe³⁺$ and low-spin Rh³⁺ ions differ in energy and orbital extension, and the nearest-neighbor Fe-Rh distance in each $(FeRhO₆)_{\infty}$ chain of Ca₃FeRhO₆ is longer than the nearestneighbor Co-Co distance in each $(C_0,Q_6)_{\infty}$ chain of Ca₃- $Co₂O₆$ (i.e., 2.694 vs 2.595 Å). Consequently, in the intrachain FM state the extent of the direct metal-metal bonding between adjacent TP and OCT sites should be weaker in $Ca₃FeRhO₆$ than in $Ca₃Co₂O₆$. As a result, the spin moments of $Ca₃FeRhO₆$ are largely localized on the TP sites, and hence, the spin exchange between adjacent TP sites becomes dominated by AFM interactions through the Fe-O…O-Fe super-superexchange paths.

Acknowledgment. The work at NCSU was supported by the Office of Basic Energy Sciences, Division of Materials Sciences, U.S. Department of Energy, under Grant DE-FG02- 86ER45259. The authors thank the Pole M3PEC, Bordeaux 1 University, France, for computing resources.

IC0508775

- (38) Stoner, E. C. *Proc. R. Soc. A* **1938**, *165*, 372.
- (39) Zener, C. *Phys. Re*V. **¹⁹⁵¹**, *⁸²*, 403.
- (40) Goodenough, J. B. *Magnetism and the Chemical Bond*, Wiley: Cambridge, MA, 1963.
- (41) Kahn, O. *Molecular Magnetism*, VCH: New York, 1993; Chapter 12.
- (42) Niitaka, S.; Yoshimura, K.; Kosuge, K.; Nishi, M.; Kakurai, K. *Phys. Re*V*. Lett*. **²⁰⁰¹**, *⁸⁷*, 177202-1 and references therein.
- (43) Szytula, A.; Leciejewicz, J. *Handbook of crystal structures and magnetic properties of rare earth intermetallics;* CRC Press: Ann Arbor, MI, 1994.